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I’ve been curious about doing my own calculations and visualizations of NBA data for my own research 

but have been stunted due to my lack of access to public downloadable current NBA data. To ameliorate this 
issue, I went through a long process of figuring out how to web scrape public data from Basketball Reference 
and manipulate the data in my own local environment. Here are the steps I took to accomplish this task, and 
the ways I’ve been able to utilize the data since.  
 I started by just trying to scrape data from the Chicago Bulls. Originally, I made the job much tougher 
for myself, importing many libraries (BeautifulSoup, requests, pandas, re) and utilizing dense code. 
Additionally, I was writing functions to columns in the table based off attributes and tags, eventually creating a 
list of dictionaries which I would then convert to a pandas data frame. This took quite some time and required a 
lot of code, but eventually resulted in a usable pandas data frame. I ended up with this resulting table below. 
 

This first example only included a few columns, as I was still 
writing code for each column at the time. It displays each of the 
player’s names, ages, and minutes per game. This was useful, I could 
continue to add columns if I wanted and go about running tests and 
creating visualizations. However, this is not practical if my goal is to 
analyze player data from the 2022-2023 season league wide. 
Thankfully, I came up with a much easier way to parse the HTML 
content from Basketball Reference. Instead of iterating through each 
row and storing a list of dictionaries, I instead wrote code to read the 
entire table on a page. To get closer to my end goal, I did this on the 
Advanced Stats page for all players for the 2022-2023 season. After 
importing pandas and requests, this new method only took a 
whopping four lines of code. Here was my code and resulting table: 

 
 
 
 

 
 
import pandas as pd 
import requests 

 
advanced_stats_url = (f'https://www.basketball-reference.com/leagues/NBA_2023_advanced.html') 

 
advanced_stats_res = requests.get(advanced_stats_url) 

 
tables = pd.read_html(advanced_stats_res.text) 
 
advanced_df = 
tables[0] 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
This was quite exciting, I got the data frame I was looking for, with all players from the season included. 

Now I had to start the cleaning process. First, there are a couple columns listed here that are unnamed and 
don’t contain any data, so I removed those first. Further inspection of the data showed that there were 3 
unnamed rows that didn’t contain any data, so I additionally dropped those rows. From here, I thought I was 
free to start making visualizations. This unfortunately was not the case. When I went to start making 
scatterplots using matplotlib, I was surprised by the results I was getting, they didn’t seem to be following any 
sort of patterns that would make sense. When I tried to calculate the correlation coefficient, I realized that my 
columns were exclusively comprised of strings, not integers. The values that were being plotted were the 
values of strings rather than the value of the integers, which is why none of the plots made any sense. I wrote 
some code to convert all of the strings to integers instead for the columns that need it.  

 
Now, I could make visualizations for all the data present in the table. I made a quick sample graph to 

start just to make sure things looked like they made sense, so I plotted something I expected to be strongly 
positively correlated, PER vs Win Shares per 48. The plot looked as I’d expected: 

 
 

 
 
 
This looks great! Except, I’m curious about these outliers. At first I thought that top right data point must be 
Nikola Jokic, but even then I’m shocked that his numbers are that egregiously high. However, I wrote some 
code to get the names of the outliers and ended up with a new realization: 
 
 



 
 
It turns out it is not Nikola Jokic, but instead Stanley Umude. Stanley Umude is a nice young wing but this 
exposes an issue with my data, players with low minutes and games played will contribute to outlier data that I 
do not want present in my visualizations or statistical tests. I decided to take out players that played less than 
12 minutes a game, and players that played less than 20 games. This changed my data significantly, reducing 
my total rows from 702 to 455. My updated scatterplot makes a lot more sense: 

  
Now, there’s a couple more things to accomplish. I was still a bit dubious about the number of rows, so I 

went through to double check if there were duplicate names, as I wasn’t sure how to the data was handling 
players playing with different teams. Sure enough, there was loads of duplicate data: 



 
 
As you can see in the printed output, the data includes each of their individual teams played for, and 

then has a total row as well. I’ll only want the total row for the purposes of using all the players, but I’ll want to 
include the player data for particular teams when inspecting individual teams. Therefore, I started by creating a 
dictionary that included all the individual teams’ data frames so they could be inspected on their own. Then, I 
filtered duplicate data out from the main data frame, taking out individual teams from duplicated players and 
only keeping rows with ‘TOT’ values, which are the totals for those particular players for the season. My 
resulting data frame now has 376 players. This number makes a lot of sense, there are 30 teams with 15 
players, but somewhere around 3-5 players on every roster that won’t reach the games and minutes 
qualifications.  

  
Now, I can do whatever I want with the 
data. Here’s an example graph where I 
adjust the previous graph to only show 
the best and worst teams from last 
season, Denver, and Detroit (check out 
where Nikola Jokic). I can do analysis on 
team specific data or league-wide, and I 
can even import images of player 
headshots if I wanted that too. The NBA 
data for the season is clean and usable 
for whatever analyses I may want. In 
conclusion, I would like to point out that 
according to their terms listed on their 
website, scraping data from Basketball 
Reference is okay if you are not flooding 
their website with requests or using the 

data to create your own machine learning algorithms, or to feed to large language models. In my case, I am 
only using fairly small tables of data to create my own visualizations, with very limited requests.  
 


