Cleaning, Engineering, and Visualizing, with Web
Scraped NBA Advanced Statistics

I've been curious about doing my own calculations and visualizations of NBA data for my own research
but have been stunted due to my lack of access to public downloadable current NBA data. To ameliorate this
issue, | went through a long process of figuring out how to web scrape public data from Basketball Reference
and manipulate the data in my own local environment. Here are the steps | took to accomplish this task, and
the ways I've been able to utilize the data since.

| started by just trying to scrape data from the Chicago Bulls. Originally, | made the job much tougher
for myself, importing many libraries (BeautifulSoup, requests, pandas, re) and utilizing dense code.
Additionally, | was writing functions to columns in the table based off attributes and tags, eventually creating a
list of dictionaries which | would then convert to a pandas data frame. This took quite some time and required a
lot of code, but eventually resulted in a usable pandas data frame. | ended up with this resulting table below.

Name Age Min PG This first example only included a few columns, as | was still
2 pear Denozan :3 ggg writing code for each column at the time. It displays each of the
2 Nikola Vudevié 32 33.5 playgr’s names, ages, anq minutes per game. This was useful, | could
3 Patrick Williams 21 28.3 continue to add columns if | wanted and go about running tests and
4 Patrick Beverley 34 27.5 creating visualizations. However, this is not practical if my goal is to
3 Ayo Dosunmu 23 26.2 analyze player data from the 2022-2023 season league wide.
6 Alex Caruso 28 23.5 . .
5 Coby White 22 23.4 Thankfully, | came up with a much easier way to parse the HTML
8 Goran Dragié 36 15.4 content from Basketball Reference. Instead of iterating through each
9 Javonte Green 29 15.0 row and storing a list of dictionaries, | instead wrote code to read the
19 Perrick Jones Jgr. 25 120 entire table on a page. To get closer to my end goal, | did this on the
12 Carlik Jones 25 8.0 Advanced Stats page for all players for the 2022-2023 season. After
13 Terry Taylor 23 7.2 importing pandas and requests, this new method only took a
14 Dalen Terry 20 5.6 whopping four lines of code. Here was my code and resulting table:
15 Marko Simonovic 23 2.9
16 Tony Bradley 25 2.8
17 Malcolm Hill 27 1.8

import pandas as pd
import requests

advanced_stats_url = (f'https://www.basketball-reference.com/leagues/NBA_2023_advanced.html')
advanced_stats_res = requests.get(advanced_stats_url)
tables = pd.read_html(advanced_stats_res.text)

advanced_df =

tables[0] Out[2]s

Rk Player Pos Age Tm G MP PER Ts% PAr .. "M% ows pws ws wsas U™t oppm
0 1 PreCeUs o 55 TOR 55 1140 152 554 267 . NaN 08 14 22 .093 NaN -1

chiuwa
1 2 StV o .9 MEM 42 1133 17.5 564 004 .. NaN 1.3 21 34 .144 NaN -0.3

Adams
2 3 Bam o 55 MIA 75 2508 201 582 011 ... NaN 36 38 74 187 NaN 08

Adebayo

Ochai
3 4 SG 22 UTA 59 1209 95 561 591 .. NaN 09 04 13 .053 NaN 17

Agbaiji

4 5 g PF 22 MEM 77 1682 13.9 .591 .507 .. NaN 2.1 24 46 130 NaN -0.3
Aldama

This was quite exciting, | got the data frame | was looking for, with all players from the season included.
Now | had to start the cleaning process. First, there are a couple columns listed here that are unnamed and
don’t contain any data, so | removed those first. Further inspection of the data showed that there were 3
unnamed rows that didn’t contain any data, so | additionally dropped those rows. From here, | thought | was
free to start making visualizations. This unfortunately was not the case. When | went to start making
scatterplots using matplotlib, | was surprised by the results | was getting, they didn’t seem to be following any
sort of patterns that would make sense. When | tried to calculate the correlation coefficient, | realized that my
columns were exclusively comprised of strings, not integers. The values that were being plotted were the
values of strings rather than the value of the integers, which is why none of the plots made any sense. | wrote
some code to convert all of the strings to integers instead for the columns that need it.

Now, | could make visualizations for all the data present in the table. | made a quick sample graph to

start just to make sure things looked like they made sense, so | plotted something | expected to be strongly
positively correlated, PER vs Win Shares per 48. The plot looked as I'd expected:

Scatterplot of PER vs. WS/48

0.6 1

041

02 1

W5/48

0.0 1

,04-

-10 0 10 2 30 40 50 60
PER

This looks great! Except, I'm curious about these outliers. At first | thought that top right data point must be
Nikola Jokic, but even then I'm shocked that his numbers are that egregiously high. However, | wrote some
code to get the names of the outliers and ended up with a new realization:

06 1

0.4 1

0.2 1

W5/48

0.0 1

Scatterplot of PER vs. WS/48

Deonte Burton
frank Jackson

#.). Lawson

Mikola Jokic
goel Embiid

Jyler Dorsey

Stanle|

Umude

-10 0

10 20 30 40
PER

It turns out it is not Nikola Jokic, but instead Stanley Umude. Stanley Umude is a nice young wing but this
exposes an issue with my data, players with low minutes and games played will contribute to outlier data that |
do not want present in my visualizations or statistical tests. | decided to take out players that played less than
12 minutes a game, and players that played less than 20 games. This changed my data significantly, reducing
my total rows from 702 to 455. My updated scatterplot makes a lot more sense:

Scatterplot of PER vs. WS/48

03 1

0.2 1

0.1

W5/48

0.0 1

Blake Wesley

Hikola

Jel En

e

10

15 20
PER

P

30

okic

biid

Now, there’s a couple more things to accomplish. | was still a bit dubious about the number of rows, so |
went through to double check if there were duplicate names, as | wasn’t sure how to the data was handling
players playing with different teams. Sure enough, there was loads of duplicate data:

In [11]: duplicates

duplicate players

advanced df['Player'].duplicated(keep=False)

print(duplicate_players)

Rk
5 6.0
6 6.0
7 6.0
26 22.0
27 22.0
668 507.0
669 507.0
693 530.0
694 530.0
695 530.0

TS%
5 0.565
6 0.609
7 0.503
26 0.602
27 0.613

Player

Nickeil Alexander-Walker
Nickeil Alexander-Walker
Nickeil Alexander-Walker
Mo Bamba

Mo Bamba

Russell Westbrook
Russell Westbrook
James Wiseman
James Wiseman
James Wiseman

3PAr TOV% USG%
0.539 14.6 17.9
0.512 19.4 18.4
0.576 6.9 17.3
0.515 10.1 16.6
0.505 8.5 16.3

Pos
SG
5G
SG

PG
PG

Q0an

OwWs

= = O O o
L
N 2O W Ww

advanced df[duplicates]

Age Tm G MP PER \
24.0 TOT 59.0 884.0 11.6
24.0 UTA 36.0 528.0 13.0
24.0 MIN 23.0 356.0 9.6
24.0 TOT 49.0 769.0 15.7
24.0 ORL 40.0 681.0 16.3
34.0 LAL 52.0 1491.0 15.3
34.0 LAC 21.0 635.0 17.8
21.0 TOT 45.0 867.0 15.6
21.0 GSW 21.0 262.0 17.1
21.0 DET 24.0 605.0 15.0

DWS WS WS/48 OBPM DBPM BPM \
0.8 1.1 0.062 -1.4 0.4 -0.9
0.5 0.8 0.074 -0.6 1.1 0.5
0.3 0.3 0.044 -2.5 =-0.5 -3.0
1.1 2.2 0.139 -0.2 0.7 0.5
0.9 2.1 0.150 0.4 0.9 1.3

.

As you can see in the printed output, the data includes each of their individual teams played for, and
then has a total row as well. I'll only want the total row for the purposes of using all the players, but I'll want to
include the player data for particular teams when inspecting individual teams. Therefore, | started by creating a
dictionary that included all the individual teams’ data frames so they could be inspected on their own. Then, |
filtered duplicate data out from the main data frame, taking out individual teams from duplicated players and
only keeping rows with ‘TOT’ values, which are the totals for those particular players for the season. My
resulting data frame now has 376 players. This number makes a lot of sense, there are 30 teams with 15
players, but somewhere around 3-5 players on every roster that won’t reach the games and minutes

qualifications.

Scatterplot of PER vs. WS/48

DEN

0301 o pET

0.25

0.10

005

0.00 L]

Nikola|joki¢

20
PER

15

5

Now, | can do whatever | want with the
data. Here’s an example graph where |
adjust the previous graph to only show
the best and worst teams from last
season, Denver, and Detroit (check out
where Nikola Jokic). | can do analysis on
team specific data or league-wide, and |
can even import images of player
headshots if | wanted that too. The NBA
data for the season is clean and usable
for whatever analyses | may want. In
conclusion, | would like to point out that
according to their terms listed on their
website, scraping data from Basketball
Reference is okay if you are not flooding
their website with requests or using the

data to create your own machine learning algorithms, or to feed to large language models. In my case, | am
only using fairly small tables of data to create my own visualizations, with very limited requests.

